skip to main content


Search for: All records

Creators/Authors contains: "ATLAS Collaboration"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A search for the Higgs boson decaying into a pair of charm quarks is presented. The analysis uses proton– proton collisions to target the production of a Higgs boson in association with a leptonically decaying W or Z boson. The dataset delivered by the LHC at a centre-of-mass energy of √ s = 13 TeV and recorded by the ATLAS detector corresponds to an integrated luminosity of 139 fb−1. Flavourtagging algorithms are used to identify jets originating from the hadronisation of charm quarks. The analysis method is validated with the simultaneous measurement of WW,WZ and ZZ production, with observed (expected) significances of 2.6 (2.2) standard deviations above the background-only prediction for the (W/Z)Z(→ c ÂŻ c) process and 3.8 (4.6) standard deviations for the (W/Z)W(→ cq) process. The (W/Z)H(→ c ÂŻ c) search yields an observed (expected) upper limit of 26 (31) times the predicted Standard Model crosssection times branching fraction for a Higgs boson with a mass of 125 GeV, corresponding to an observed (expected) constraint on the charm Yukawa coupling modifier |Îșc| < 8.5 (12.4), at the 95% confidence level. A combination with theATLAS(W/Z)H, H → bÂŻb analysis is performed, allowing the ratio Îșc/Îșb to be constrained to less than 4.5 at the 95% confidence level, smaller than the ratio of the b- and c-quark masses, and therefore determines the Higgs-charm coupling to be weaker than the Higgs-bottom coupling at the 95% confidence level. 
    more » « less
  2. Abstract The standard model of particle physics 1–4 describes the known fundamental particles and forces that make up our Universe, with the exception of gravity. One of the central features of the standard model is a field that permeates all of space and interacts with fundamental particles 5–9 . The quantum excitation of this field, known as the Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the standard model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN 10,11 . Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, enabling much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and W and Z bosons—the carriers of the strong, electromagnetic and weak forces—are studied in detail. Interactions with three third-generation matter particles (bottom ( b ) and top ( t ) quarks, and tau leptons ( τ )) are well measured and indications of interactions with a second-generation particle (muons, ÎŒ ) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the standard model. 
    more » « less